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SUMMARY 
The aim of this paper is to give open boundary conditions for the incompressible Navier-Stokes equations. 
From a weak formulation in velocity-pressure variables, some natural boundary conditions involving the 
traction or pseudotraction and inertial terms are established. Numerical experiments on the flow behind 
a cylinder show the efficiency of these conditions, which convey properly the vortices downstream. 
Comparisons with other boundary conditions for the velocity and pressure are also performed. 
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1. INTRODUCTION 

The motivation of this work is to establish boundary conditions on open domains for the 
incompressible Navier-Stokes equations in order to perform long-time simulations at high 
Reynolds numbers. 

There are so many papers in the literature about the incompressible Navier-Stokes equations 
that the reader can be overwhelmed. In particular, various authors propose numerous formula- 
tions and open boundary conditions. For an exhaustive review we refer the reader to Reference 
1. Here we limit the study to the velocity-pressure equations which can be used in 2D as well 
as in 3D without any changes. However, several weak formulations have been built, most of 
them giving specific boundary conditions on downstream artificial boundaries. 

For example, more than 10 years ago Peyret and Rebourcet’ gave a homogeneous Neumann 
condition for the tangential velocity component and a condition for the pressure through a 
parabolization of the momentum equation, both coupled with the continuity equation. For low 
Reynolds numbers these conditions are numerically stable and yield good solutions. On the 
other hand, they give rise to strong reflections at high Reynolds numbers. 

Later in the 1980s Pironnead and Begue et aL4*’ proposed a Dirichlet condition on the 
pressure for the Stokes model and gave a Bernoulli equation for the Navier-Stokes model. In 
both cases the tangential component of the velocity is set equal to zero. 

At the same time Halpern6 and Halpern and Schatzman’ studied artificial boundary 
conditions for the linear advection-diffusion equation and the linearized Navier-Stokes equa- 
tions, following the theory of absorbing boundary conditions developed for the wave equation. 
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Our work is closer to the studies carried out by Conca,' Ganesh,' Gresho'.'' and Verfurth' '*12 
involving boundary conditions on the traction or pseudotraction, the most famous being to set 
the pseudotraction equal to zero. Starting from the genuine Navier-Stokes equations, we build 
a weak formulation on the velocity and pressure, including natural boundary conditions, which 
leads to a well-posed problem. For Stokes flows these conditions reduce to taking the 
pseudotraction equal to zero or the traction equal to the traction of a reference flow, for instance 
Poiseuille flow. Otherwise we take into account the effects of the inertial terms. Numerical 
experiments on the flow behind a cylinder in a channel show that these conditions are very 
efficient and do not affect the solution. 

2. THE GOVERNING EQUATIONS AND NOTATIONS 

The dimensionless Navier-Stokes equations read 

a , U + ( U . V ) . U - d i v 6 ( U , p ) = O ,  

div U = 0 

or 

a,U + (U  . V) . U - div o(U, p) = 0, 

div U = 0, 

where U = ( u ~ ) ~  is the velocity, p is the pressure, Re is the Reynolds number, 6(U, p) is the 
pseudostress tensor and c (U,  p) is the stress tensor: 

1 

Re 
qu, p )  = - vu - p l ,  

2 
Re 

o(U,  p )  = - D(U)  - p l ,  with D(U)ij  = 

We solve equations (1) or (2) in a domain R c RN of boundary r = TD u rN, I-, n rN = 0, 
associated with the initial condition 

U(0) = U o  in R, (3) 

a Dirichlet boundary condition on r D ,  

U = U ,  on TD x (0, T),  (4) 

and one of the following Neumann-type boundary conditions on r,: 
G(U, p ) .  n - + @ ( U .  nKU - v,) - @((u - v,) * n ) ~ ,  = G, on rN x (0, T),  

:(u, p )  . n - +@((u - v,) * n ) ~  = G, on r N  x (0, T), 

Z(U, p )  . n - @ ( U .  n)(U - V,) = G, on r N  x (0, T),  

6 ( U ,  p )  . n - f@( (U - V , )  . n)(U - V,) = G, on rN x (0, T )  

(54 

(5b) 

(54 

( 5 4  
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or 

o ( U , p ) . n - f @ ( U . n ) ( U -  V , ) - f @ ( ( U -  V , ) . n ) V o = G G ,  on r N  x ( O , T ) ,  (64  

(6b) 

(6c) 

( 6 4  

where V, is a reference velocity field we specify below, n is the unit normal vector pointing out 
of the domain, c, and G, are data to be specified and @(a) is one of the real functions 

a(U, p )  . n - f@((U - V,) . n)U = G ,  on r N  x (0, T), 

a(U,  p)  . n - t@(U . n)(U - V,) = G ,  on r N  x (0, T), 

a(U, p )  . n - @((U - V,) . n)(U - V,) = G, on rN x (0, T).  

@(a) = a, @(a) = - a - ,  @(a) = -1aI. 

a = a+ - a-  = 2a+ - lul. 

with the notation 

These boundary conditions are mathematically very close to each other. They are derived 
from a weak formulation of the Navier-Stokes equations that ensures an energy e~ t ima te . ' ~  The 
three forms of the @-function come from the control of the boundary terms resulting from the 
integration by parts of the convection terms. More precisely, @(a) = a, @(a) = a -  and @(a) = 
- la1 correspond respectively to eliminating the boundary term on r N  or keeping the positive 
part of the boundary term on r N  once or twice. Indeed, keeping this positive part allows us to 
derive an energy estimate. 

3. WEAK FORMULATION 

Let us denote by (V,, p , )  the solution of the Stokes problem in SZ satisfying 

Vo= UD on r D ,  

For instance we can take for U ,  the restriction on r N  of a Stokes flow computed on a larger 
domain. 

As an example we introduce the weak formulation corresponding to (6c) for V =  U - V,, 
q = p - po and H a given external force on rN: find a couple ( y  q)  solution of I', d,V- W d o  + { [ ( V  + V,) . VV] . W - [ (V + Vo). V W J .  V }  d o  

I', n div V d o  = 0 

for any couple of test functions (W a). 
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In these equations a is a non-negative real number and we adopt the notation 

0 :  IJ' = 1 rJ..g!. 
V V' 

ij 

To get the first equation, we use a symmetric form of the non-linear term and we add the 
boundary term to ensure coercivity. For more details see Reference 13. To convince the reader, 
let us formally interpret this formulation. 

First we remark that by symmetry we have 

D ( V ) : D ( W )  = D(V):VW 

and by the Stokes formula 

[, (i D(V) :  VW - q div W div a(V, q) . W d o  + [a(V, q ) .  n] . W dy. 

Moreover, since V and V, are divergence-free vector fields, we get the identity 
c c c 

[ ( V +  Vo).VW'l*Vdw=- [ ( V +  Vo).VV].Wdo+ [ ( V +  Vo).n]V.Wdy. J, J, J, 
Now, since the test function W vanishes on TD, the weak formulation reduces to 

1, d,V.  W d o  + In [(V + V,). V(V + V,)] . W d o  - div a(V, q ) .  W d o  I 
[ a ( V , q ) . n + { a [ ( V +  V,).n]+ - % V +  V,).n}VI].Wdy= H.Wdy ,  

+ LN l r N  

{, n div V d o  = 0. 

Thus V is the solution of the boundary value problem 

d,V + [ (V  + Vo)-V](V + V,) - div a(V, q) = 0 in R x (0, T), 

div V = 0 in fl x (0, T), 

V ( 0 )  = U ,  - V, in R, 

V = 0 on TD x (0, T),  

o(V, q ) . n  + { a [ ( V +  V o ) - n ] +  - 3 V +  V , ) - ~ } V =  H on rN x (0, T), 

where a takes the value 0, f and 1 respectively for the three forms of the @-function. 
Finally, since (V,, p,) is the solution of the Stokes problem, we obtain 

a , U + ( U . V ) . U - d i v a ( U , p ) = O  i n R x ( 0 ,  T), 

div U = 0 in R x (0, T), 

U(0) = U ,  in R, 
U = UD on x (0, T), 

a(U, p )  n - f@(U . n)(U - V,) = CT(V,, pol. n + H on rN x (0, T )  
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for some appropriate p o .  Thus U is the solution of (2H4) and (6) with H = G ,  - a( Vo, p o ) .  n, 
where H is given by the physics. 

We point out to the reader that for Stokes flow conditions ( 5 )  reduce to 

C(U, p1 .n  = G, on r N  x (0, T )  

and conditions (6) reduce to 

.(U, p ) .  n = G ,  on r N  x (0, T),  

and that in this last case the Gk must be non-zero because a(U, p).n = 0 is not compatible with 
Poiseuille flow. 

The condition of pseudotraction equal to zero is often used in the literature (see e.g. Reference 
1,9  and 10 and references cited therein), even for the Navier-Stokes equations, although we are 
not able to show that this leads to a well-posed problem. On the contrary, if we add inertial 
terms as in (5), we can get a well-posed problem. Here we consider both stress tensors and add 
some new non-linear terms for the Navier-Stokes model. 

4. APPLICATION TO A CHANNEL 

In this paper the boundary conditions above are tested in two dimensions to compute the 
incompressible flow behind a cylinder in a channel as shown in Figure 1.  The numerical tests 
have shown that for the physical stress tensor the condition (6c) with @(a) = - a -  is the best 
one. Indeed, this condition is the only one that takes into account only the global flow U in the 
function 0. Besides, the choice of @(a) = - a -  implies that when the flow is outgoing, the 
condition locally reduces to the Stokes flow condition, but when the flow is incoming, a traction 
term deduced from inertial terms is added to convey the vortices downstream. 

We take a Poiseuille flow with a flow rate of unity upstream and a no-slip condition on the 
rigid boundaries as follows: 

u = ( 6 4  - %I, 0) on FD. 1, 

U = (0, 0) on TD,o. 

Besides, on the artificial boundary r N  there is no external force given by the phsyics, so H = 0. 
This implies 

G ,  = 4 V o , ~ o ) ' n .  

1 5 0  
0 

Figure I .  Domain and notations 
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When rN is not too close to the obstacle, the solution of Stokes flow is a Poiseuille flow 
downstream. Thus with a flow rate of unity we can take 

UN = (6xJ1 - xzh 01, 

4V0, P o ) .  n = (0, 6(1 - 2x2)). 

Therefore condition (6c) reads for U = (ul ,  14,) and p 

2 au ,  

Re a x ,  
p - @(ul)[ul - 6 x 2 ( l  - x2)J  = 0, 

6 

Re 
- f @ ( U , ) U ,  = - (1 - 2x,). 

This can be generalized by taking, instead of Poiseuille flow, U ,  equal to the trace on rN of 
a steady solution of the Navier-Stokes equations computed on a larger domain. 

Let us notice that these boundary conditions link the three unknowns ( u ,  , u,, p). Consequently 
they are very well adapted to a method that involves the pressure explicitly. Moreover, by adding 
the continuity equation to equations (7a) and (7b), we can derive uniquely the three unknowns. 

In a mixed formulation, where the pressure is known when computing the velocity, equations 
(7a) and (7b) allow us to determine the two variables (ul ,  u2). On the contrary, in a strongly 
coupled approach we need explicitly the three unknowns downstream. Then we add the 
continuity equation to get one component of the velocity and the pressure is given by equation 
(74. 

For the three forms of the @-function we have three different conditions very close to each 
other. Taking 0 equal to the identity (a  = 0) corresponds to the natural Neumann-like condition 
and eliminates the non-linear boundary term in the weak formulation. For the other forms of 
@(a # 0) we take into account the direction of the flow through the artificial boundary. Let us 
note that if @(a) = - a -  (a = i), the inertial term vanishes when the flow is outgoing and so the 
boundary condition reduces to the condition of Stokes flow. 

In this work we choose to present our conditions in a channel with solid walls. That is why 
the reference flow is a Poiseuille flow. In other respects, if we consider the flow around a cylinder 
in an open channel, we can take as reference flow the uniform flow ( u , ,  u2)  = ( L O ) .  In this case 
the boundary conditions (7) become 

2 a u ,  

Re a x ,  
p - f @ ( u , ) ( u ,  - 1) = 0, 

2- (?!? + "1) - f@(U1)U2 = 0. 
Re a x ,  a x ,  

Remark 

Instead of conditions (7) we can also use for @(a) = -a -  

2 au ,  

Re a x ,  
p + f(u,)-u, = 0, 

6 
Re a x ,  Re 
L (3 + 5) + g u l ) - u z  = - (1 - 2x,). 
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The same condition for the pseudotraction gives 

1 au, 
Re a x ,  

- p + &4,)-u, = 0, -- 

1 aU, + +(u,)-uz = 0, ~- 
Re ax, 

which is a condition that does not need a reference flow. 

5. NUMERICAL RESULTS 

The numerical tests are performed with condition (6c), with @(a) = - a - ,  for a large range of 
Reynolds numbers. For Re = 100 we observe a stable steady solution with a recirculation just 
behind the cylinder. In Figure 2 we show by the streamlines that the artificial boundary can cut 
the recirculation right in the middle without any significant perturbation. The broken shape of 
the cylinder is due to the approximation by square cells. 

For higher Reynolds numbers the steady solution loses its stability to the benefit of a purely 
periodic solution. For Re = 200 the recirculation goes up and down across the symmetric axis 
of the domain and the flow does not present any other vortices. In particular, there are no 
bubbles travelling downstream. The cut shown in Figure 3 demonstrates clearly that the 
condition (6c) is also efficient for unsteady flow. However, we can see very small perturbations 
localized in the last cells downstream. These perturbations do not affect the whole flow and 
remain close to the artificial boundary even for a long-time simulation. 

When the flow becomes more complex, strong vortices are convected downstream and cross 
the artificial boundary without any reflections, as shown in Figure 4. Small perturbations can 

I 

I:.':.:' .:::~!!_!:!:!.'.. ':!::.!:..,:.:: _::. ................ :...: ::..::, --: .,:;.. 
. .  ...... .......................... . ................................ , ~ .  

I .  .:.; .............................. ...... _. . . .  ,-; 
. .  .................. 

..................................... 
- 

,.. 

Figure 2. Streamline :s at R e =  100 
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Figure 3. Solution at Re = 200: streamlines and vorticity lines 

be seen in particular on the vorticity lines. These perturbations remain confined in the last cells 
and are more visible on the vorticity which is not a primary variable. They do not induce any 
reflections and have no action on the long-time behaviour of the flow. Indeed, we do not observe 
any delay for solutions computed on a truncated domain. Moreover, the spectrum of the solution 
does not change with the position of the cut. 

For the above flows the Stokes condition 

gives about the same results as condition (6c). However, for higher Reynolds numbers these 
conditions induce strong reflections (Figure 5 )  and it is necessary to take into account the 
non-linear terms to avoid numerical blow-up. 
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Figure 4. Solution at Re = 1OOO: streamlines, isobaric and vorticity lines 
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I 
! 
% 

Figure 5. Solution at Re = l0,OOO with conditions (6c) (top) and (8) (bottom) 

6. COMMENTS O N  BOUNDARY CONDITIONS FOR THE CHANNEL 

We do not intend to give an exhaustive review of the boundary conditions for the Navier-Stokes 
equations, but only to make some comments about those which are the closest to ours. We 
begin with the conditions proposed by Peyret and Rebourcet:2 

au, 
a x  - = 0  on rN, 

au, au, 
- + - = O  o n r , .  ax,  ax, 

The first equation comes from a parabolization of the Navier-Stokes equations. It gives the 
pressure by integration along r N .  The second equation is a usual condition on the pseudotraction 
Z(U,p) .  Here the second component is set equal to zero. The third equation is the continuity 
equation. These boundary conditions are stable and well adapted to steady laminar flow, but 
give reflections when strong vortices cross the artificial boundary. 

use Z(U, p ) . n  = 0 on r N  for Stokes flow. Here we also propose 
a(U, p ) .  n = a(V,, P o ) .  n, where (Vo, p o )  is a reference flow. Although these conditions do not take 
into account the convection terms, numerical experiments show that both conditions can be 
used for the Navier-Stokes equations except for high Reynolds numbers. 

In the same way Verfurth'1,12 adds a penalty boundary term on the normal component of 
the traction in a mixed formulation coupled to U . n = g on r N .  We point out that a(V, p ) .  n. n = 0 
on r N  makes sense for Poiseuille flow, but not a( U, p) n . T = 0. 

Several 
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-I 
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Figure 6. Cut of the domain for Re = 100 with conditions (7) (left), (9) (middle) and (10) (right) 

Figure 7. Solution at Re = 200 with conditions (7) (top), (9) (middle) and (10) (bottom) 

Finally, Bkgue et d4-' establish for the Stokes problem numerous conditions on the pressure. 
In particular, the boundary equation p + f<u: + u:) = po  on rN links the pressure to the modulus 
of the velocity. In another work Pironneauj substitutes for a(U, p ) .  n = 0 on rN the conditions 
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Figure 8. Solution at Re = loo0 with conditions (9) before numerical blow-up 

to get a well-posed Stokes problem. 
We perform numerical experiments with conditions (9) and the conditions 

p = -3.: + u t )  on rN, 

to test another condition on the pressure. 
For low Reynolds number, the conditions (9) gives much the same solution as ours with slight 

discrepancies at the boundary (see Figures 6 and 7). It is smoother in the middle but shows 
some extra gradients at the corners. On the other hand, conditions (10) pertub the solution in 
a significant region downstream, as shown in Figures 6 and 7. At higher Reynolds numbers, for 
which strong vortices cross the artificial boundary, we are not able to get the solution with both 
conditions (9) and (10) owing to strong reflections downstream, as shown in Figure 8. 

7. CONCLUSIONS 

In this work we propose new non-linear boundary conditions on an open boundary to compute 
the solution of the unsteady incompressible Navier-Stokes equations. We establish Neumann- 
like boundary conditions associated with a weak formulation which yields a well-posed problem. 

The numerical tests presented in this paper prove the accuracy and robustness of these 
conditions. Indeed, we can cut the domain everywhere without significantly perturbing the flow, 
even when strong vortices cross the artificial boundary. Moreover, it appears that it is necessary 
to take into account the non-linear terms to compute chaotic flows. 
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